On Hamiltonian Stationary Lagrangian Spheres in Non-einstein Kähler Surfaces
نویسندگان
چکیده
Hamiltonian stationary Lagrangian spheres in Kähler-Einstein surfaces are minimal. We prove that in the family of non-Einstein Kähler surfaces given by the product Σ1×Σ2 of two complete orientable Riemannian surfaces of different constant Gauss curvatures, there is only a (non minimal) Hamiltonian stationary Lagrangian sphere. This example is defined when the surfaces Σ1 and Σ2 are spheres.
منابع مشابه
Hamiltonian stationary tori in Kähler manifolds
A Hamiltonian stationary Lagrangian submanifold of a Kähler manifold is a Lagrangian submanifold whose volume is stationary under Hamiltonian variations. We find a sufficient condition on the curvature of a Kähler manifold of real dimension four to guarantee the existence of a family of small Hamiltonian stationary Lagrangian tori. Mathematics Subject Classification (2000) 58J37 · 35J20 · 35J48...
متن کاملLagrangian spheres, symplectic surfaces and the symplectic mapping class group
Given a Lagrangian sphere in a symplectic 4-manifold (M,ω) with b+ = 1, we find embedded symplectic surfaces intersecting it minimally. When the Kodaira dimension κ of (M,ω) is −∞, this minimal intersection property turns out to be very powerful for both the uniqueness and existence problems of Lagrangian spheres. On the uniqueness side, for a symplectic rational manifold and any class which is...
متن کاملLagrangian unknottedness in Stein surfaces
We show that the space of Lagrangian spheres inside the cotangent bundle of the 2-sphere is contractible. We then discuss the phenomenon of Lagrangian unknottedness in other Stein surfaces. There exist homotopic Lagrangian spheres which are not Hamiltonian isotopic, but we show that in a typical case all such spheres are still equivalent under a symplectomorphism.
متن کاملHamiltonian stationary Lagrangian surfaces in C 2
We study Hamiltonian stationary Lagrangian surfaces in C, i.e. Lagrangian surfaces in C which are stationary points of the area functional under smooth Hamiltonian variations. Using loop groups, we propose a formulation of the equation as a completely integrable system. We construct a Weierstrass type representation and produce all tori through either the integrable systems machinery or more di...
متن کاملCompact Special Legendrian Surfaces in S Compact Special Legendrian Surfaces in S
A surface Σ ⊂ S ⊂ C is called special Legendrian if the cone 0 × Σ ⊂ C is special Lagrangian. The purpose of this paper is to propose a general method toward constructing compact special Legendrian surfaces of high genus. It is proved there exists a compact, orientable, Hamiltonian stationary Lagrangian surface of genus 1 + k(k−3) 2 in CP 2 for each integer k ≥ 3, which is a smooth branched sur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008